导读:综合利用专利分类网络结构特征与文本语义特征,基于多种特征形成技术融合关系预测方法和价值评估方法。【方法】区分专利与专利分类间的关联强度,构建专利分类共现网络,获取专利分类间的网络结构相似性特征,价格评估,固定资产评估并根据关联强度赋予专利分类以专利文本,利用文本表示学习方法得到其文本语义相似性特征。根据网络结构特征和文本语义特征构建专利分类间多种相似性指标,融合多种指标构成特征向量,利用随机森林模型学习不同指标的权重和贡献,计算技术融合概率,排序得到候选技术融合关系集合。基于专利分类引用网络特征和文献计量特征,从影响力和成长潜力出发,账外资产评估,著作权评估,车辆评估,森林评估提出领域技术价值、商业价值和战略价值评估指标,利用被引数加以验证,最后用所得方法评估技术融合关系,获取高价值技术合关系。【结果】本文方法的TopK预测准确率比单一特征至少提高20%;评测得到的前10对高价值技术融合关系与真实排名相差极小,平均绝对误差仅为3.2。【局限】选取的数据库存在数据项不统一的问题;只尝试了单一的随机森林方法,未对其他前沿方法进行验证。【结论】专利分类关联强度能够提高网络分析预测方法的预测效果,同时多特征融合方法相较于单一特征预测方法,能够提高技术融合关系预测效果;另一方面,本文的价值评估方法能够有效实现高价值技术融合关系价值的筛选。 |